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On Hotelling’s Approach to Testing for a
Nonlinear Parameter in Regression

by

Mark Knowles
Alza Corporation
and
David Siegmund
Stanford University

A | Abstract.

"The method suggested by Hotelling (1939) to test for a nonlinear parameter in a regression
model is reviewed. Using the method of Weyl (1939), we derive a simple expression for the
volume of a tube about a two dimensional manifold with boundary embedded in the unit
sphere in I®". Applications to testing for a single harmonic of undetermined frequency and

phase and to testing for a change-point in linear regression are discussed.
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1. Introduction.

Hotelling (1939) and Weyl (1939) initiated a profound line of geometric research (e.g.
Griffiths, 1978, Langevin and Shifrin, 1982, Gray, 1982), motivated by the following statistical
question. Suppose y; = 8f;(8)+¢; (i = 1,2,...,n), where the f; are known functions depending

"f.‘t .s- ;

on an unknown, perhaps multidimensional parameter #, and the ¢; are independent N(0,0?)
errors. What is the significance level of the likelihood ratio test of Hy : § = 07 (One can

also consider the more general model y; = (a,z;) + Bfi(8) + &;, where a is a p-dimensional

parameter and the z; are known p-dimensional vectors, as we show in Section 4.)

One of Hotelling’s principal motivating examples is f;(#) = cos(ut; + w), where the ¢; are
known constants and @ = (u,w). Another example is the broken line regression f;(4) =
(t; — 8)*. Davies (1987) gives an interesting discussion of each of these problems from a %

different viewpoint. N

It is easy to see that the likelihood ratio statistic for testing Hg : 8 = 0 is equivalent to
max { [Z£(0)w]*/[Sr2(8)Sy?] }
Setting f(8) = (f1(),..., fn(6)) and y = (y1,...,yn), we can write this statistic in the form )

mae{ 700,07/ L1 @I . 3

In terms of the unit vectors v(8) = £(8)/|(f(8)|| and U = y/||yl|, the rejection region is of the
form

max(y(9), U)? > w?.
The rejection region can be described geometrically as the union of two tubes in the unit sphere
S$™-1 one about 7(#) and one about —v(#), of geodesic radius cos~!(w). Here the tube about

v(8) of geodesic radius ¢ is the set of all u € S™~! within geodesic distance ¢ of the manifold

/J{. 1™ *5 f(',"{i{',‘lf}'

~4(8) as @ ranges over some parameter space. Under Ho U is distributed uniformly on $™-!
D and hence the significance level of the likelihood ratio test is the normalized surface area on

57-1 of the union of the two tubes.

= RN

. x A=

The purpose of this paper is to review the Hotelling-Weyl approach and explore its

statistical implications by a detailed discussion of the two concrete examples mentioned above.

: Additional applications are described by Naiman (1986a,b), Knowles (1986), and Johansen
and Johnstone (1988).

LD Balkasi

The theoretical basis for our discussion of the broken line regression, which involves a one

LAy

! dimensional parameter 6, is given by Naiman (1986) and Johnstone and Siegmund (1987). The
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theoretical situation for multidimensional 4 is less satisfactory. Since Weyl’s theorem concerns i
manifolds without boundary whereas many statistical problems and Hotelling’s example in .{
particular involve manifolds with boundary, we begin by giving a version of Weyl’s theorem for ‘:?
two dimensional manifolds (surfaces) with boundary embedded in $™~!. The two dimensional :..::
case is especially interesting because a term which would be onerous to evaluate numerically ~
can be combined with other terms and evaluated analytically by an application of the Gauss- :_
Bonnet Theorem. Naiman (1987) discusses a special class of d-dimensional manifolds with )
boundary, but even in the case d = 2 his result is somewhat differently formulated. '
Our numerical studies have two purposes. (i) Since the Hotelling-Weyl theory is exact ]
only for tubes of small radii, i.e. for small significance levels, we indicate through these concrete "séf
examples the accuracy provided by the theoretical results at conventional significance levels. ‘ ::::r
(ii) Since the theoretical results contain coefficients depending on the sample size and dimension E:‘}E:
of the parameter space, which can be difficult to compute, we investigate numerically the effect B
of approximating or neglecting some of these coefficients. ‘\';
The paper is organized as follows. Section 2 contains our version of Weyl’s theorem for :
surfaces with boundary. Once the theorem is formulated the proof is not difficult for the 'f
careful reader of Weyl’s paper. Nevertheless, we give the argument in some detail because b,
the restriction to surfaces makes possible a completely elementary (in the sense of differential -
geometry) exposition, which we hope will make the subject more widely known by statisticians. :,‘
Section 3 specializes our generai theorem to the problem of testing for a periodic term and -}:
compares some numerical results with the outcomes of a simulation experiment. Section 4 ,
discusses the problem of testing for a break in a regression line. For the most part Sections 3 :: :
and 4 can be read independently of Section 2. In Section 5 we try to draw some qualitative ::
conclusions and discuss possible extensions of our results. E:
]
2. The Volume of Tubes about Surfaces with Boundary. ‘.f,
23
Suitable references for the following developments are Millman and Parker (1977) and Do ."
Carmo (1976). The former is notationally consistent with Weyl (1939) and with modern usage, ~
and consequently that notation is used here. The latter gives a more thorough and often more N
adequate treatment of the concepts needed below. ::5.:
As in Hotelling (1939) and Weyl (1939) we consider first the technically simpler case of ::_:
surfaces M in IR™ and then indicate the modifications required for surfaces in the unit sphere ot
S$n-1 ¢ IR™. o
-
We assume that a regular, oriented surface M C IR™ is given locally by a C3 function ':E:"
3
2 ’
N
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z = z(u',u?) defined on an open set in IR?>. Assume also that the boundary of M, say M,
is given by a piecewise regular, positively oriented curve v, parameterized by arc length. (The
reader who wishes to avoid the technical concept of orientation may consider the special case
in which M is given globally by z(u!,u?) .)

The tube about M of radius a is the set of all points whose minimum distance to M is
less than a. We say that overlap occurs at a point y in the tube if there exists more than one

point in the manifold which is closest to y.

Let |M| and |8M| denote the surface area of M and length of &M respectively. Let Q,
denote the volume of the unit ball in IR and wy, the volume (surface area) of the unit sphere
S* CR™! (R, = /2 [T(n/2 4 1),wn-1 = 20™/2/T(n/2); our wa_, is Weyl’s w,).

Theorem 1. Assume that the exterior angles at the vertices (if any) of M are positive in
the sense that the tangent to vy rotates through a positive angle at each vertex. For all a
sufficiently small that no overlap occurs in the tube of radius a about M, the volume V(a) of

the tube is given by

V(a) = |M|Qn_2a"" 2 4+ 27 1|OM|Q,_1a™! (1)
+ 2rx(M)Qn_2a" /7,

where x(M) is the Euler-Poincaré characteristic of M .

Remarks. (i) the factor 2rx(M) in (1) arises indirectly as
/ KdA + kqods + £4,, (2)
M aM

where K is the Gaussian curvature and dA the element of surface area of M, kg is the geodesic
curvature and ds the element of arc length of OM, and the 6, are the angles of rotation of the
tangent to 4(s) at the vertices of 9M. That (2) equals 27 x(Af) is the Gauss-Bonnet Theorem
(Do Carmo, 1976, p. 274). Since numerical evaluation of the individual terms in (2) would be
onerous whereas x( M) is easily determined and in statistical problems is often zero or one, this
simplification of (2) is quite fortunate. That the various ingredients of (2) are involved in V'(a)
is not surprising. That they all have the same coefficient and hence can be combined appears

in our proof as an accident of calculation for which we do not have a satisfactory geometric

.explanation.

(i1) The condition that no overlap occurs is both a local and a global condition. The tube over-

laps itself locally whenever one of the Jacobian matrices appearing in the following argument
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has a vanishing determinant. In that case the curvature of the surface is so great that the A
mapping which parameterizes points in the tube is not locally one~-to—one. The occurrence of 0 N
global overlap is not so easily characterized. If no local overlap occurs, the right hand side of ‘E"
(1) is an upper bound for the left hand side. Johansen and Johnstone (1988) give an algorithm \
to determine the smallest radius at which overlap occurs in a tube about a curve. Ty
(iii) If some of the exterior angles at vertices of M are negative and no self overlap occurs :'
except the local self overlap at those vertices, V(a) is < the right hand side of (1). ::,'E
Proof. We give the proof for n = 4, which simplifies the necessary computations and except ..,::‘
for one technical identity given at the end of the proof has all the ingredients of the general ::.":‘
case. The method involves evaluation of the differential of volume at a point y in the tube, "::
say dV(y), iollowed by integration over the tube. We consider separately the case of points y
which are nearest an interior point of M and points nearest to a boundary point. Initially we Lo
follow Weyl closely. =)
For points y nearest to an interior point z = z(u',u?) we have y = z + &n(1) + £2n(2), :*‘
where n(1) and n(2) are mutually orthogonal unit normals to the tangent space to M at :;
z(u!,u?). Then y = y(u', 4% £,§;) and “::
]
2V(9) = s, va, 3o, el s d, 3) §

w:

where y; denotes the partial derivative of y with respect to the ith argument, and the double

3

bars denote the absolute value of the determinant of the Jacobian matrix of the enclosed :: o
(column) vectors. We have :'s;
g
. "~

yi =z + Gini(1) + £ni(2) (1= 1,2), (4) o
ya = n(1),ya = n(2), -
Sy
. . o
where z; = 8z/9u* and n;(v) = On(r)/Hu’. We can express n,(v) as a linear combination of o
z1,2,n(1), and n(2) by (Weingarten equations) 0%
ni(v) = =Z;L(v)z; + ..., (5) 23
RS
. e
where —L](v) is for our purposes defined to be the coefficient of z; in the indicated expansion, :.:‘
and + ... indicates components orthogonal to the tangent space spanned by r, and r,. Hence :

writing

3

Liv) Ly
Lv)= ) .
L¥(v) L3(v)
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) we have in matrix form by (4) and (5)

i (11,92) = (21,22)(I ~ 6L(1) = L) + ..,

oy

L

Yy so (3) becomes

B |
;}i: dV(y) = lI(z1,22)(I = &L(1) ~ £2L(2)), n(1), n(2)||du'du?d§,d; (6)
Wy

o = |le1, 22, n(1), (|| M = & L(1) ~ & L(2)||du du’ty dE;.

\r
~

e From the determinantal identity

1.8
) -

o o1, - - s vkl? = (v, 251,

i
:::: we see that the first factor on the right hand side of (6) equals g'/2, where (g;;) = ({zi,2;))
S

is the matrix of the first fundamental form of M and g = |g;;|. Since dA = g'/?du'du? is the
:::: element of surface area on M, we see from (6) that the volume associated with points y closest
:0.‘ to interior points of M is
R

(0
R w@=[ [ -6 - aL@lddada. )
- M €?+€§Sa"’
q
4
:. Expansion of the determinant in (7) yields

AN

)
:3' 1 - &tr L(1) — &tr L(2) + €71 L(1)] + €31 L(2)]

)

+ &6 {L1(1)13(2) + L1(2)L3(1) — 2L3(1) Ly(2)},

By 4
-;:. $0

) .
s w@= [ [ a+8Il+ L@ dadada
».' M Jg2+g2<a?
02X

’ =i+ [ (L4 [, €ddeada

: M €3+€3<a?
--', = ra?|M| + 4'17ra4/ (1L} + |L(2)])d A.

M

)
k .e,: To identify |L(1)] + |L(2)| as the Gaussian curvature k', we put z,; = 8z/8u'du’ and in the
' customary way (e.g. Do Carmo, 1976, p. 232) define Christoffel symbols I‘fj and coefficients
|
-':: Lij(v) by
s zij = Lilfzi + SoLij(v)n(v).
\t Since (z;,n(v)) = 0, L;;(v) = (zij,n(v)} = —=(x;.n;(v)), and hence by (5) Li,(v) = Skgerf(V)-
. One can now proceed line by line as in standard proofs of Gauss's Theorema Egreqium (e.g.
::\:'.' Do Carmo, 1976, pp. 233-34; Millman and Parker, 1977, pp. 142-43) to show that the
A0 .
:;:', intrinsic evaluation of K in terms of the Christoffel symbols and their partial derivatives
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equals |L(1)| + |L(2)|. Hence

Vi(a) = ma®|M| + 4‘17ra4/ KdA. (8)
M

Now assume that the closest point in M U M to y is a point y(s) € 8M where 7(s) =
dv/ds exists. Then
y =7+ 1(0) + &in(1) + £2n(2), (9)
where n(0) is a unit vector in the tangent plane of M, but orthogonal to ¥ and as before n(1)
and n(2) are orthogonal to the tangent plane. We choose n(0) to point towards the interior of
the manifold (rotated by +/2 from ), so the geodesic curvature k, = k,(s) = (7,n(0)), and
n € (—a,0).

The volume element is

dV(y) = |iy1, ¥2, y3, yal|dsdndé,dE;,

where as before y; is the partial derivative of y = y(s, 1, £, £2) with respect to the ith argument.
Putting ¢ = dg/ds, we have the Frenet-Serret equations (cf. Do Carmo, 1976, p. 261)
¥ = kn(0) + k1n(1) + kon(2)
7(0) = —ky7 + rin(1) + myn(2)
n(1) = —k;Y — 1n(0) + 13n(2)
n(2) = —ky7 — 1n(0) — T3n(1),

where except for kg the values of the coefficients ultimately will not concern us. Hence by (9)

dV = ||7 + n7(0) + £,7(1) + £7(2), n(0), n(1), n(2)||dsdnd€,dE;
= “7(1 - nkg - glkl e £2k2)» n(0)9 "(1),71(2)”‘13‘177‘1{1(152

The volume associated with these points y is

Va(a) = / /// (1 = nky — k1&1 — k2&2)d€1dE2dnds
n<o
oM n2+€2 +€2<a?

0
- / / m(a® = n°)(1 - kyn)dnds (10)
M J-a

= 2x|OM|a%/3 + 4'17ra4/ kyds.
aM

The contribution to V'(a) from points in the tube which are closest to vertices of M is

clearly

(a) = D4a*TH; /27 = 47 ra*T8,, (11)
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where the 8’s are the angles of rotation of the tangent to 4 at the vertices.

Addition of (8), (10), and (11) and an appeal to the Gauss—Bonnet Theorem as indicated
in Remark (i) following the statement of the theorem complete the proof in the special case
n = 4.

The proof for general n is essentially the same. The coefficients of fM KdA, faM k,ds,

and X6; are respectively

a"/.../z . ffdgl,...dfn_z,—a"/... <o ndnd€, .. .d€n_~.
SREEAAEIEES n2+e24. 42 _ <1
and (27)~1a"Q,, which some calculus shows are all equal to n='a"2,_, . 1

To prepare for the spherical case suppose y = y(u?,...,u" 1) is a coordinate patch of a

hypersurface in IR™. Let p = (y,y) and 2z = y/p € S*~'. Assume z is one~to—one.

Lemma 1 (Weyl): The volume element at z € S™~! is given by

dV(z) = ||y, 315 s Yneafldu’ .. du™" fp",

where y; = 9y/du'.

Proof. Since z is the unit normal to the hypersurface z(u',...,u""?),
dv(z) = ||z, z1,. ey zpotfldul L dutT
where z; = 9z/0u'. Since
z = p lyi + ydp~ /OW,

by collinearity we have |z,2y,...,2,1] = Iy,yl,...,yn_ll/p". 1

Now suppose M C §"~!, the unit sphere in [R”. The tube about M of geodesic radius ¢
is defined as the set of all 2 € S"~! such that (z,z) > cos ¢ for some z € M.

Theorem 2. Assume that M C S™~! and the exterior angles at the vertices of 9M are
positive. For all ¢ sufficiently small that no overlap occurs in S™~! in the tube of geodesic

radius ¢ about M, the volume V() of the tube is given by

V(g)=(n-3)"lw,_y [lMl cos ¢(sin )" 73

@
+27rx(M)/ (sinw)""zdw] + [2(11 - 2)]_1wn_3|8‘\1|(sinup)""z,
0

-)

'.,"'.\\ o> -..- 5“' P Ay L O «p.'a..-‘.\.-‘.- AN, -*-..p..-'r-'.“.-.‘-"-..-()J-._.
- 5 o) ! N - . - N M )

Yy

Oy

S he

L ok P P A
LA

”

»
NN A

AR L



where x(M) is the Euler-Poincaré characteristic of M.

Proof. Suppose z is a point in the tube closest to an interior point z of M. Put k = n ~3

and
y= y(ul,uz,fl,...,fk) =z+&6n(1)+ ...+ &n(k), (13)

where z = z(u',4?) € M and the n(v) € $"~! are mutually orthogonal unit normals to the

tangent space of M at z(u',u?). Then we have the representation

e=y/(+ &+ + €D

& +...+¢& <tan?o.
By Lerima 1 and (13)

duldu?dg, .. .d&,
Q1+ &+ ...+ )M

dV(z) = lly, y1,y2, n(1),...,n(k)||

The proof of Theorem 1 together with some calculation shows that the contribution to the

volume of the tube from these points is

dt; ... d
hile) = //z: 2 <tant o 1“‘2”“( 0 (1+£1£ -f-kfi)"““

= Wpog [IMI/ cos? w(sinw)* *dw
0

+(n-3)""! /M(I\' - 1)dA /Ov(sinw)"’zdw]

=(n - 3)—1wn_4[|;’l[|cos<,o(sina,c)"_3 +/ ]\'dA/ (sinw‘)”’zd“;].
M

The reason for the appearance of K — 1 in an intermediate equality of (14) is that (13) involves
k = n — 3 of the n — 2 normals (in IR™) to the tangent space of M. The last normal is z. the
normal to S™~! itself. Its contribution to the (intrinsic) Gaussian curvature of A equals the
Gaussian curvature of S™~!, which is one. Hence from the n — 3 normals represented in (13)

we obtain A" - 1.

For points z closest to a point of M where 7(s) exists. we have
y=y+0n0)+En(1)+ ...+ &nlkhz=y/(1+ 0"+ &+ ...+ &2

where n(0) is orthogonal to ¥ but in the tangent space of M (pointing into M), and n{1).....

LA




n(k) are as before. Also n < 0 and n? 4+ €2 + ...+ £f < tan?p. By Lemma 1
dsdnde, . ..ty

aviz) = “y’y"“"y‘"“‘“u +m+E 4.+ )2

= |lv,7 + n7(0) + T&A(D), n(0), n(1),. . ., n(k)|] dsdnd§; .. .d&

T+ n?+ &+ .+

Using the Frenet-Serret equaticons as in the proof of Theorem 1, we obtain

k
dsdnd§; .. .d&
dV(z) = (1 = kgn - c:i&; .
D D e
where k; = (7,n(0)) = -(7,7(0)) is the geodesic curvature of 4, and the exact values of the

coefficients ¢; need not concern us. Hence the contribution to the volume of the tube arising

from these points is

dndé, .. .d&ds
Vo) = | (1- ko) . (15)
M J s ekt (T+n?+ &+ + e
= [2(n - 2)] " 'wn-3l8M|(sin )" + (n — 3)_1wn_4/ kgds/ (sinw)" ?dw.
oM 0

Finally, the contribution arising from points nearest to a vertex of dM is

V() = (1= 3) woa(0,) [ (sinw) P (16)

0

Addition of (14).(15). and (16) and an appeal to the Gauss-Bonnet Theorem as in Remark

(1) following the statement of Theorem 1 complete the proof. 1

Corollary 1. Under the conditions of Theorem 2, if U is uniformly distributed on S},

. 27T (n)2)| M |uw(1 — w?)*F
P{ sup (e(u.u®). U) > w} = (:3//2}“1[(1111( 1)/2u] )

_ - [(n/2)x(M) ! ne
1 2\ (n—-2)/2 _ 2\(n=3)/2
+(4m) 7| OM(1 - w®) + wl/zr[(n — l)/‘Z] / (1 -1°%) dz.

Proof. The corollary follows from the fact that the indicated probability is the normalized

volume of the tube of geodesic radius = cos™! w. i.e.

V(cos™? U')/\.un_l.
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; 3. Testing for an Harmonic. )
N t
! Assume y; = Bcos(ut; +w) +¢; (i = 1,2,...,n), where the ¢; are known constants and 3
E: th~ = are independent N(0,02). The parameters 8, y,w, and o2 are all unknown, and we wish t
! to test Hp : 8 = 0 against H; : 3 # 0 . It is convenient to write ‘
§ )
" B cos(pt; +w) = By cos(ut;) + B2 sin(ut;), 3
! )
i
:.‘ where §; = fcosw, B2 = —3sinw, and consider the equivalent problem of testing Ho : §1 =
B2 = 0. A calculation shows that the likelihood ratio test has a rejection region of the form
Y ]
f 1 U 2 2 U 211/2 7 .1
: sup  [(v'(n),U)* + (v*(w), U)*]"" > w, (17) 0
N 1 <p<p2 "
4 "
? where 7' (u) € $™ 1, (v} (), v* (1)) = 0 for all u, and U = y/||y|| is uniformly distributed on
S™~1if Hy is true. In the special case that the t; are equally spaced, the natural range of y is 3
: (O, 7|'). -\
: 1
' Johnstone and Siegmund (1987) exploit the one dimensional structure of (17) and obtain .
g by a non-geometric argument an upper bound for the signficance level of the likelihood ratio =
” test. We shall show as an application of Corollary 1 that their inequality is an equality when N
g the significance level is sufficiently small. We also show by a Monte Carlo experiment that ';,
: when the t; are equally spaced these analytic results provide very good approximations for the '~.
a true significance level over a broad range of values. -
B Note that o
o -
. o
s [(V (1), U + () Y] = sup [(+%,U) cosw + (12, U) sinw] :
; 0<w<2n _-(
‘ = sup [(y'cosw+ v?sinw, U)]. ’
0<w<2r ’
» n
, Hence, if we put z(g,w) = y'(p) cosw + y%(p) sinw, Corollary 1 gives us the probability of ;
K (17) in terms of R
! ~
) 2r ru2 [y g2 Oz (2 /dr 8r\2)'/?
= [ G G - (i) ] e %
o Ju ou ow op’ Ow ‘Q
27 ] 2r F) , \
|OM| =/ _I(“L“’_)“,w.;./ _“"(_“Q_ﬁz“du, N
0 Ow 0 Ow A%
~
and x(M).
‘
! Since ||8z /8w|| = 1 for all k, |@M| = 47. It is easy to see that x(A) = 0. For example. X
b one can cut the surface along w = 0 to obtain a new surface which clearly has Euler-Poincaré 0
4
' N

10
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characteristic equal to one and a connected boundary with four 90° exterior angles. Comparison

of the Gauss—Bonnet Theorem applied to the cut and uncut surfaces shows that x(AM ) = 0.

To obtain an expression for |M|, observe that z, = 8z/0w = ~v!sinw + y?cosw and
.1 -2, -1 ‘2, .
z, =08z/8u =7 cosw+7 sinw,sol|z,|| = 1and||z,|| = ||7 cosw+7 sinw]||. Since (y!,4%) =

. .2 1 . .
0, (“/1,72) = ~{¥1,7") and hence (z,,z,) = (7 ,7?) cos?w - (71,72) sin?w = (71'72)_

Substitution of these results into the formula given in Corollary 1 yields

Corollary 2. If 4(u) € S™"! (i = 1,2) are non-selfintersecting regular C* curves and

(v (1), ¥ (1)) = 0 for all u; < pu < pa, then for all w sufficiently close to 1,

d { sup [(71(#)-U)2+(72(u),U>2]1/2>w} = (1= w?)n22 (18)

m <pu<lpg
2T (n/2)
x3/20 [(n - 1)/2]

™[ fur : ‘
w(l - u,z)(n-a)/z/ / [l|‘7l cosw + % sin w2 - (‘71.72)2]1/2dpdu.
0 1

Remark. Using quite different methods, Johnstone and Siegmund (1987) showed that the
right hand side of (18) is an upper bound for the left hand side for all 0 < w < 1. In
the one dimensional case, i.e. for a tube about a curve, Johnstone and Siegmund provide two
derivations of upper bounds for the tube volume which are shown to be equalities when no self
overlap occurs in the tube. However, their method does not seem to yield the equality in (18),
and our geometric method does not appear to give their inequality for all 0 < w < 1. In fact
the problem of obtaining tight upper bounds for the volume of tubes of arbitrary radii about

manifolds of dimension > 2 appears to be a difficult problem.
For a numerical example suppose that the t; are equally spaced, so by recentering we have
t;=1—m,wherem = (n+1)/2,i=1,...,n. The model is then

y=Bf (p) + B2f2(n) + e,

where y = (1, .-+ Un )€ = (€1,...,€n ), f1 (1) = (cosu(1 —m)....,cospu(n — m)), and f¥(u) =
(sinp(1 ~ m),...,sinu(n — m)). It is readily verified that (f!,f2) = O,|If!'? = n/2 +
sin(nu)/(2sinp),||f3||2 = n/2 — sin(nu)/(2sinpu), and hence the 4' in (17) are given by
T = fi/llfill (i = 1,2). Also ("'/1,"72) =0= (‘?1,72). For yuy = 0,u; = = the integral in

(18) for our special case reduces to
s 2r R 2.0 ) 1/2
/ / [H'? 1? cos?w + |77 sin® w] " “dwdp. (19)
o Jo
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Obtaining useful expressions for |7 || and ||7"|| requires a lengthier calculation. Some

details are given by Davies (1987), who (assuming 02 is known) discusses the likelihood ratio :E
test from a different viewpoint and is led to the same integral. Davies observes that ||‘9i(u)|| ~ :
n/(2-3Y2) except for u close to 0 or x, which suggests use of 72n/3!/2 as an approximation '::
for (19). He subsequently modifies this suggestion to be more consistent with his numerical '
calculations. Although the modified approximation seems excellent, in the numerical example :,,.
given below we have computed (19) numerically. ";*
For various values of n and w, Table 1 gives the right hand side of (18) and the outcome r)
of a 10,000 repetition Monte Carlo experiment to estimate the probability on the left hand -.\‘
side of (18). The analytic result seems to provide a very good approximation, although it is
less satisfactory for large n. jalt
o)
Table 1 ,;_
The Probability (18) e
L&
‘,
n w  Right Hand Side of (18)  Monte Carlo Estimate b
90 092 091 E«.
8 .95 018 015 7
16 .75 073 073 ;'J,
16 .80 022 021 '
32 55 186 181 d
32 .60 .058 057 g\
32 .65 014 014 :'E\
64 .40 .355 .298
64 .45 .082 .069 ;\
64 .50 014 013 ™
3
The term in Corollary 1 which involves the Euler-Poincaré characteristic of M is of smaller >
order of magnitude than the others as w — 1. For manifolds of dimension > 2 the analogous ';E
terms do not in general simplify as they do in the two dimensional case, and they can be quite b '
complicated to evaluate numerically. Hence it is interesting to consider the accuracy of the ;“'
approximation we obtain by simply ignoring those terms. ;
Our second example is concerned with essentially the same manifold z(u,w) = 31 () cosw ‘::
+ 7%(u) sinw as before, but now w is restricted to the range 0 < w < 7. The area of the new ':.::.:
L
1A O e B it T g A A A T A N 2 N N A DL PEP L N S M A O I N N SEE N A AT Y
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” manifold is one-half that of the old. The length of its boundary is

;:‘ o

X 27 42 / 17 1du, !
! 0 )
) and its Euler-Poincaré characteristic is one.

i Table 2 gives a numerical example. The columns headed |M|, |dM|, and x(M) give the

-, values of the respective terms in Corollary 1. The final column gives the results of a 10,000
; repetition Monte Carlo experiment. A
‘A )
. Table 2

4 \
f:c Effect of Neglecting the Gauss—Bonnet Term
o
I:‘
oyl n w |M| |6M| x(M)  Total  Monte Carlo
& 8 86  .090  .025 .001 116 .115 q
{
:.. 94 .013 .002 .000 015 .016 ;
¥ 16 72 063 .015 .001 079 .082 »
u 16 .78  .018  .004 .000 021 024
N 32 .54 111 028 .001 .140 135 :
3 32 .58 046 .010 .000 057 057
3 »
/ 64 40 .176 .043 000 219 .186
953
i 64 .45  .041  .009 .000 .049 .040 ]
[ :

' The analytic result seems to be about as accurate as in the preceding example. Neglecting .
§j the term involving x(M) would have negligible effect, but neglecting the term involving |3 M|
’9 would make a substantial difference. Since both |M|and |[0M| may be shown to be proportional :

to n, one might have predicted these relations from analytic considerations. It is also interesting
n that in this case our theoretical result is not known to be an upper bound; and in three rows
i
the Monte Carlo estimate actually exceeds slightly the theoretical value.
§ n
4. Testing for a Change—point in Linear Regression.
N {
! |
~ Assume y; = Bo + Biti + B(t; — 8)* + ¢ (i = 1,...,n), where the t; € {0,1] are known

constants B, 81, and B are unknown parameters, and the ¢; are independent N(0,0?%). The

2 problem of testing Hy = 8 = 0 has been discussed, for example, by Hinkley (1969, 1971},
Y Feder (1975), and Davies (1987). Presumably one-sided alternatives, say H; : 8 > 0, are
EE, scientifically more relevant and we consider only this case. For our numerical examples we
oy take the ¢; to be equally spaced: t; = (i - 1)/(n-1), t=1,...,n.

13

-

%o L A e . ,
E e N Y e M e R S et

LN v ; AL Y )
XXMM IOV NN MOl NS RN,




. B Ay gt O

. g CRU TR PPN T g J v o mat mad > Bat Bat * Ha® M
W UMNUNU MU RUNC WL W °a% ‘- e A M g W M P Nl W Mg W W o, W W W W W Wy Wy T

We begin with the special case 8p = $; = 0, which fits directly into the framework of
Section 1 with f;(8) = (t; — )t (i = 1,...,n). Since v(8) = f(8)/||f(6|| is only piecewise
smooth, Hotelling’s (1939) results are not directly applicable. Naiman (1986) and Johnstone
and Siegmund (1987) obtain a suitable extension which gives an upper bound for the volume

of the tube of geodesic radius ¢ about 4 for all 0 < ¢ < 7/2.

We consider a slight generalization of the likelihood ratio test, where we may restrict the
set over which we search for a possible change-point to a subinterval of [0, 1], say [0, 6]. (See
James, James, and Siegmund, 1987, for the effect this modification has on the power of the
likelihood ratio test in a related problem.) The test statistic is maxo<s<g,(7(6),U) and the
length of v is |y] = foa° II7(8)|id6. According to Naiman (1986) and Johnstone and Siegmund
(1987) forall0< w < 1

1
P{ o525, (6. 1) > w} < rl/zrr[g:lz/f]l)ﬂ] /w (1= 2Hnmode (20)

+2m) |1 - w?) D,

Assume now that t;, = (i - 1)/(n = 1) (i = 1,..., n). Some calculation shows that
|7(8)]] = 0 for (n—2)/(n-1)< 8 < landforv/(n—-1) -2 8 < (v+1)/(n=1)(v =0,1,...,n=3)

_ _ 2 —_ n
o = { S}/ ake.

where 4,(0) = 02 +b,0 +¢,,b, = —(n+v)/(n-1),and ¢, = {2[(n - 1)2+3(n - v +v?)] +
3(n+v-1)+1}/[6(n~ 1)2]. It is easily checked that A,(6) > 0 for v < n — 3. s0

(n_l)‘l ((n=1)60] ' m (n -1- l/)2 -1 1/2 (v+1}/(n-1)
=3 Pl
/0 v (o)l Uz:% 12(n — 1)2 v/(n=1)

where m = min(n — 3, |[(n — 1)8p}). Integration gives

17(6)lldé (21)

= - 312y +2—n) ) 31/2(y ~ n)
=Z{tan 1 [{(n—l—u)2—1}‘/2] —tan ! [{(n—l-uﬁ—l}‘/?”'

=0

/(ﬂ-l)"’ L(n-1)60]

With the help of (21) one can evaluate the right hand side of (20) numerically. (Note that
the first term is just P{t,_; > (n — 1)}/2w/(1 — w?)!/?}, where t,, denotes a random variable
having Student’s distribution with n degrees of freedom.) Some additional analysis shows that

as n — oo
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::‘; A 17(8)l1d6 — —3'/2[log(1 - 6o)} /2, (22)
! )

:'.: which may be used instead of (21) to evaluate approximately the right hand side of {20).

%

b( Table 3 compares the upper bound (20) with the results of a 10,000 repetition Monte
\.; Carlo experiment. Both (21) and (22) are used to evaluate the right hand side of (20), and
1:' both yield reasonably good approximations to the true probability.
0..'

e Table 3

(I X

Change—point in Regression (5, = 5; = 0).

g

a:::.

i

NI Theory (20)
n
?;'0: n w 6 Exact(21) Approx. (22) Monte Carlo
;"'": 5 729 (n-2)/(n-1) .10 111 .095
3 | 10 637 (n-2)/(n—1) 05 055 049

,.'_' 20 476 (n—2)/(n-1) .05 055 047
e 20 452 80 05 052 043
[~ 50 274 (n—=2)/(n-1) .10 .108 .090

o
o, 50  .240 .80 .10 107 .094

.’I
o 50 317 (n-2)/(n-1) .05 054 048
bl 50 .286 .80 .05 .054 047

"_: We now drop the assumption fo = B; = 0. As indicated in a slightly simpler context
v:' by Hotelling (1939)), one can reduce this case to the one considered previously as follows.
RS

s Writing our model in the form y; = 8o + Bt + 8f(8) + &; (i = 1,...,n) and introducing
= the notation y = (y1,.--yYn)s t = (t1,.. 1 tn), f(8) = (fi(8)...., fu(8), € = (€1,....€q), €=
j'.: (1,...,1), § = n"'Zy;, { = n~'T¢;, and f(6) = n~1Tf(8), we let §; = yi — Bo — G4t;. where
5: B = (t — fe,y)/|it - Te||? and Bo = § — Bif are the maximum likelihood estimators of 3; and
A% Bo under Hg : 3 = 0. It is readily verified that

el Gi=Bfi0)+&  (i=1,...,n)

o where L~ fe. f(8)
o fi(8) = £i(6) - f(8) - <'—|_t_—e—’t.;“—2~(t‘ - 1)

10 and _
s fme— g (t—te.e)(
T [Jt—gel? ™
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Also %(8) = £(68)/|1f(8)]| defines a curve on the n ~ 3 dimensional sphere ]
.
{(ul,...,un):Eugzl,Eu,--_-O,E(t,-—t_)u,-:O}, l‘
and under Ho : 8 = 0,9/(|g|| = U is uniformly distributed on this sphere. It follows that

(£(8),v) = (f(G),ﬂ) and (20) gives an upper bound for the significance level,
7
_ )
- byt

P{ 3, (30),0) > w}, (23) 2
of the likelihood ratio test provided |v| is replaced by |7], the length of the curve %, and n is :
replaced by (n — 2) to account for the degrees of freedom lost in estimating 5o and ;. e
W,
It is now in principle straightforward to evaluate the arc length of 4(8) and hence obtain ‘.::
an upper bound for (23). There does not seem to be an exact expression as simple as (21); 'c‘:'
{]
and since (22) seemed to provide a reasonably good approximation in the previous case, we )
use the analogous approximation here, After substantial calculation, one finds that as n — oo ’

F

o
[ 13608 — (317272108 811 - 60) /6ol 1 ~ 1) (24)
0

Table 4 compares the analytic upper bound for (23) with the results of a 10,000 repetition

Monte Carlo experiment. The analytic upper bound is given by (20) with n replaced by n — 2
and || replaced by [§|. We have used the right hand side of (24) with 6, = 1/(n — 1) and

6, = (n — 2)/(n — 1) as an approximation to |¥|. For each value of n there is one Monte

,.,...,,
Sl N Y

Carlo experiment, so the entries for fixed n and different values of w are dependent. The

results indicate that except for small n the theoretical approximation is reasonable, albeit

5 st
b "}

o]

not excellent. Table 3 suggests that we could perhaps halve the error of the approximation by

N4

computing |¥| numerically.
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Table 4

Change—point in Regression (8, 5; unknown)

n w Theory Monte Carlo
963 .10 .059
989 .05 018
10 .693 .10 .080
10 763 .05 038
10 .867 .01 .008
20 495 .10 .085
20 .553 .05 .043
20 656 .01 .010
50 321 .10 077
50 359 .05 041
100 .232 .10 .079
100 .259 .05 .041

5. Discussion.

In this section we consider briefly some possible extensions of Theorem 2. The most
obvious concerns tubes about higher dimensional manifolds (with boundary). Unfortunately
there does not seem to be any way in general to avoid some nasty looking computational

problems.

For example, suppose Af is a three dimensional submanifold of $”~! with a two dimen-
sional boundary M. It is possible for M itself to have a (one-dimensional) boundary, but

for simplicity we assume it does not.

The method of proof of Theorems 1 and 2 shows that the contribution to the volume of
the tube of geodesic radius ¢ about M coming from points in $”"~! which are closest to an

interior point of M is

df].....dfk
Vi(g) = 1+ €3(J-3 dA.
1(¥) /};’ /£§+...+£§5um’¢[ &i( )](l +£12 + -~-+f§>"/’

Here k = n — 4.d A is the element of surface area on A, and J is a curvature on Af defined as

follows. If (L?(v)) (v = 1.....k+1) are 3 x 3 matrices defined as in (5) relative to the normals

n(v).v = 1.....k, to M in the tangent space of S"~! and the normal n(k + 1) to M which is

w *I..I‘?

SO

T ‘, - _%_m_w:
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also normal to S™ 1, then J is the sum over v = 1,...,k + 1 of the sum of the three pairwise 4
products of the eigenvalues of (L{(u)), i.e. the second symmetric function of (L(v)). :: ;
A
The contribution to the tube volume from points closest to 8M can be shown to equal '::'r
&t
dnd€?, ..., dE? 3
V() = / / [1 - 20Hs(0) + E(K5 - 1)) LT S
oM n2+(¥+ ."f::Slanw (1 + n2 + El toot Ek)n/z _.‘
where dAj is the elemenet of surface area on M, K3 is the Gaussian curvature of M, and ;::
Hj5(0) is the part of the mean curvature of 9M associated with that normal n(0) to M which

lies in the tangent space of M (and points into M).

Addition of V] and V; and some calculation give an expression for the volume of the tube,

I

which involves =
-
/ dA,/ dAa,/ JdA+2/ H5(0)dAs, e

M aM M aM »

and faM R3dAjy. The last integral can be simplified by an application of the Gauss-Bonnet 4
Theorem. The others must be evaluated numerically in most cases. Numerical computation ::’
of the third expression appears to be rather complicated in general, although in special cases ::-
the integrands can be simplified analytically. D

Py

We are primarily interested in small probabilities, and it is easy to see that here as ,-.:’:

in Theorems 1 and 2 the terms involving curvatures of M and JM are of smaller order of :':
. . . '!"

magnitude as w — 1 than those involving the surface areas, [M| and |[§3f|. Thus we might use o

only these comparatively easily computed terms as an approximation. The second example in

g

Section 3 shows that such an approximation would be quite good in that case. :::
We record here the first two terms of the small tube probability for an m dimensional '.:'.:/-:
manifold with boundary embedded in S™~'. We assume M C S"~! is defined locally by :p:
A

z=2z(t), t € T CIR™, let |M| and |@M| denote the surface area of M and @M. and let U be ®
uniformly distributed on S"~1, Then as w — 1 ::-_.
A

o

27T(n/2)| M| o 2 (nem— :-

P{max(z(t).U)>w} = w™ (1 - w?)nmm-/2 25 ~
{max(z(1).U) > w} T A (- m e ] ) (25) 4

4—1F(n/2)laMl u,m—-2(1 _ w?)(n—m)/2 + O((l _ u‘2)(n—)\l+l)/2).

1rm/2f[(n—m+l)/2] Eag

Complete development of these ideas is a project for future research. See Naiman (1987)

Caas
Sl

for a theoretical beginning in this direction and Johansen and Johnstone (1988) for a thought

PN
provoking application. .‘-
,
.. A
Naiman (1986) and Johnstone and Siegmund (1987) show that Hotelling's formula giving : .
LY

the exact volume of a tube of small radius about a non-closed curve actually provides an

=
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upper bound for the volume of a tube of arbitrary radius. (The result also applies to closed
curves provided they are given fictitious end points and regarded as not closed.) It would be
interesting to obtain good upper bounds for the volume of tubes of arbitrary radii about higher
dimensional manifolds. However, simple examples of surfaces in IR> show that the situation is
much more complicated than for curves. In particular, for a cylinder of unit radius and height
h the formula for the volume of tube of radius a < 1, to wit 4wrah + 272a?, does not give an
upper bound for the volume of a tube of radius a > 1 when & is large. On the other hand the
formula for the volume of a tube of radius a < 1 about S? C IR3, 87a(1 + a?/3), provides an
upper bound for the volume for all a although for S! C IR? the closed curve must be given

fictitious endpoints in order to obtain an upper bound valid for tubes of large radii.

Acknowledgment: The second author would like to thank P. Diaconis, I. Johnstone, and M.
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